Connect with us

News

Researchers fine tune new thermoplastic biomaterial

Published

on

The material was developed by teams at the University of Birmingham in the UK and Duke University in the US

Researchers in the UK and US have succeeded in fine tuning a new thermoplastic biomaterial to enable both the rate at which it degrades in the body and its mechanical properties to be controlled independently.

The material, a type of polyester, has been designed for use in soft tissue repair or flexible bioelectronics by a team at the University of Birmingham in the UK and Duke University in the US.

In a new advance, the team has now shown how the addition of succinic acid – a product found naturally within the body – can be used to control the degradation rate.

In a new study, published in Nature Communications, researchers showed how the polyester biomaterial degrades gradually over a period of four months, with healthy tissues growing into and eventually replacing the implant. Tests in rats were also carried out to confirm the material’s biocompatibility and safety.

Co-author of the study professor Andrew Cove said: “Biological tissues are complex with varying elastic properties. Efforts to produce synthetic replacements that have the right physical characteristics and that can also degrade in the body have been ongoing for decades.

“Part of the challenge is that a one-size-fits-all approach doesn’t work. Our research opens up the possibility of engineering biological implants with properties that can be fine-tuned for each specific application.”

Professor Matthew Becker, who holds dual appointments in chemistry and mechanical engineering and materials science at Duke, added: “The materials we have developed offer a real advance in the ongoing search for new biomaterials.

“The tunable nature of the material makes it suitable for a range of different applications, from replacement bone to vascular stents to wearable electronics.

“Additional work to prove the biocompatibility of the material and its use in more advanced demonstration is ongoing.”

The research was funded by the National Science Foundation, the John S. and James L. Knight Foundation, the European Research Council and the National Health and Medical Research Council of Australia.

The technology is the subject of international patent applications filed by the University of Warwick and the University of Akron.

Continue Reading
1 Comment

1 Comment

  1. Pingback: Prototype to test for sexual infections - Health Tech World

Leave a Reply

Your email address will not be published. Required fields are marked *

Health tech alerts



Sign up for HT World updates