fbpx
Connect with us

Research

Centre could soon reduce the need for pharmaceutical trials on animals

Published

on

The University of Rochester in the US will house a new national centre focused on using tissue-on-chip technology to develop drugs more rapidly and reduce the need for animal trials.

The National Institutes of Health awarded a $7.5 million (£5.9 million) grant to establish the Translational Center for Barrier Microphysiological Systems (TraCe-bMPS) at Rochester in partnership with Duke University.

The centre aims to develop five Food and Drug Administration–qualified drug development tools related to study barrier functions in disease—interfaces in tissue that are critical for the progression of infection, cancer and many autoimmune disorders.

Over the five-year grant, the research team will create drug development tools specifically related to central nervous system disorders, fibrosis, musculoskeletal autoimmune disease, sepsis and osteomyelitis.

The TraCe-bMPS researchers will create the drug development tools using microphysiological systems—small chips with ultrathin membranes of human cells.

They will be built using the modular, mass-producible µSiM chips pioneered by centre director James McGrath, the William R. Kenan Jr. Professor of Biomedical Engineering.

The scientist said that testing drugs on µSiM chips can lead to fewer animal trials.

And because researchers will be studying the drugs’ effects on human cells, they may also help overcome some of the critical differences between testing on humans and animals.

He added: “Drug discovery is moving into an era where fewer animals are used to test for safety and efficacy.

“Instead, more screening will be done on tissue chips that pattern human cells in a way that mimics human tissue and disease.

“Our chips are designed to provide the higher throughput and more reliable indications that pharmaceutical companies need to get their drugs approved for clinical trials and use by patients.”

Hani Awad, the Donald and Mary Clark Distinguished Professor in Orthopaedics and a professor of biomedical engineering, said that Congress passing the FDA Modernization Act 2.0 in 2022 made the center possible and that the team is excited to help shape the future of drug development.

The researcher explained: “The timing could not be more perfect.

“As a biomedical engineer and scientist, I find the elegant fusion of engineering and biology inherent in the design and validation of these tissue chips as disease models and drug-testing platforms to be one of the most rewarding pursuits in my professional career.

“I can’t wait to see what this team will be developing over the next five years, and beyond.”

Benjamin Miller, a Dean’s Professor of Dermatology at Rochester, said the centre is the culmination of years of research and collaboration.

He added: “Getting our devices qualified by the FDA as drug development tools will mean that we’re a step closer to doing ‘clinical trials on chip’ with fully human models, increasing the likelihood of a drug candidate being successful when it actually gets to human clinical trials.

“This is also a great opportunity to build an interdisciplinary training environment for our students and expand a collaboration with my colleagues that has been very productive.”

Joan Adamo, director of the Office of Regulatory Support at the University of Rochester Medical Center’s Clinical and Translational Science Institute, added: “This unique programme involves close collaboration with the FDA through a series of qualification steps—a critical aspect to addressing unmet needs.

“I am looking forward to working closely with the agency and our collaborators on this regulatory science project.

“We will achieve qualification of these vital drug development tools, which will accelerate research conducted at URMC and be shared with other academic health centers and industry programmes.”

Image: University of Rochester photo / J. Adam Fenster

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Trending stories