Connect with us


New biosensor developed for more effective treatments

Avatar photo



The research comes from Monash University's department of chemical engineering

Researchers in Australia have created a new biosensor which could lead to faster and more effective treatments for chronic health complications.

The research team, led by Dr Simon Corrie from Monash University’s department of chemical engineering and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, took an antibody that binds EGFR (epidermal growth factor receptor) proteins and engineered it to monitor the concentration of EGFR proteins in serum solutions over time.

An inability to detect the growth of EGFR proteins in humans can be associated with the development of a number of tumours, including cancer, as well as the onset of diseases like Alzheimer’s.

Using an independent detection mechanism developed by the research team involving fluorescent dyes, researchers created a biosensor from a well-known antibody that was able to read out changes of the EGFR protein in real-time by monitoring detectable changes in the fluorescence spectra.

Dr Corrie said: “All the diagnostic tests that we are familiar with involve sampling something at a particular point in time and taking the same to a lab to interrogate it. But for patients suffering from acute conditions, in which time to diagnose and rapid treatment are very important, this traditional diagnostic process is not good enough.

“Monitoring dynamic changes in proteins, for example protein levels increasing or decreasing over time, is likely to provide much more detailed information about a disease or treatment process, but the sensors required to do this don’t exist outside of continuous glucose testing for diabetes.

“Our capacity to create antibodies, which bind reversibly to targets and can be read out using fluorescence, means we can develop in vivo sensors. These sensors can monitor the levels of critical biomarkers as they change over time in response to a disease or treatment, rather than just sending a sample to a lab and getting a snapshot in a day or two.

“These biomarkers could include the amount of surface proteins on a cancer cell and whether or not a drug causes them to reduce in size, therefore testing the efficacy of treatment. It can also be used to monitor the concentration of potentially toxic drugs, like some antibiotics.”

This discovery was able to engineer an antibody fragment capable of reversibly binding to a protein analyte (scFv) in a chemical solution, while retaining the specificity of the original antibody sequence.

Through their efforts, continuous in vitro monitoring over multiple hours was successfully recorded.

“Work is underway to employ dyes that are much better suited to medical applications,” Corrie added.

“In future, we expect that this process will be used to generate a range of biosensors that can monitor protein concentration continuously inside the human body, through a biopharmaceutical process, or in the environment.”

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Trending stories