Published
4 months agoon
Aphasia is a debilitating language disorder that impacts all forms of verbal communication, including speech, language comprehension, and reading and writing abilities. It affects around one-third of stroke survivors, but can also be present in those with dementia, especially in the form of primary progressive aphasia.
“Aphasia can be very isolating,” says Dr. Jed Meltzer, a neurorehabilitation scientist at the Rotman Research Institute (RRI), part of Baycrest Health Sciences in Toronto, Canada.
“It can negatively affect people’s personal relationships, and it often determines whether or not someone can continue working.”
Dr. Meltzer and his team tested language performance and used magnetoencephalography (MEG) to measure brain waves in 11 stroke survivors with aphasia before and after they underwent brain stimulation therapy.
The scientists found that the participants had abnormal electrical activity in brain regions close to but outside the area destroyed by the stroke. This abnormal activity was mainly a shift to slower brain waves, a pattern they have also observed in individuals with dementia.
“We mapped that abnormal activity and targeted it using non-invasive brain stimulation,” says Dr. Meltzer. “We found that the stimulation made the activity more normal – that is, faster – and improved language performance in the short term.”
Previous research has demonstrated that brain stimulation can improve language performance in aphasia patients. However, this study is one of the first to link this performance improvement to changes in the brain activity surrounding the tissue destroyed by stroke.
In other words, this study suggests not only that brain stimulation works in aphasia patients, but also that the reason it works may be because it addresses abnormalities in the brain surrounding the destroyed tissue.
Another novel aspect of this work is that the scientists targeted each individual’s abnormal brain activity with the stimulation treatment. In contrast, the standard approach in previous studies has been to use the exact same treatment, targeting the same brain areas, on every patient.
“Our results demonstrate a promising method to personalise brain stimulation by targeting the dysfunctional activity outside of the destroyed brain tissue,” says Dr. Meltzer. “Aphasia patients are highly variable in terms of where their brain damage is and what part of the brain should be stimulated for therapy. By mapping individuals’ brain waves, we are finding ways to target the right area to improve their language performance.”
While the participants in this study were stroke survivors, individuals with dementia have similar dysfunctional tissue in their brains, and the scientists are also examining the use of brain stimulation in this group.
Dr. Meltzer and his team looked at the immediate effects of single stimulation sessions in this study. As a next step, they have received funding from the Heart and Stroke Foundation to conduct a full-scale clinical trial looking at the longer-term impacts of repeated stimulation for stroke survivors with aphasia.
However, this study has been suspended because of the restrictions on in-person research participation due to the COVID-19 pandemic. In the meantime, the scientists have pivoted to optimize other aspects of aphasia treatment.
With additional funding, the researchers could test different types of stimulation with more patients over more sessions, allowing them to make faster progress in developing this treatment for individuals with aphasia.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.